Python开发

python爬数据教程,python数据分析视频教程

这位读者以为我的公众号设置了关键词推送对应文章功能。所以看了我的其他数据科学教程后,想看“爬虫”专题。

不好意思,当时我还没有写爬虫文章。

而且,我的公众号暂时也没有设置这种关键词推送。

这样的消息接收得多了,我也能体察到读者的需求。不止一个读者表达出对爬虫教程的兴趣。

之前提过,目前主流而合法的网络数据收集方法,主要分为3类:

开放数据集下载;API读取;爬虫。前两种方法,我都已经做过一些介绍,这次说说爬虫。

概念许多读者对爬虫的定义,有些混淆。咱们有必要辨析一下。

网络爬虫(英语:web crawler),也叫网络蜘蛛(spider),是一种用来自动浏览万维网的网络机器人。其目的一般为编纂网络索引。这问题就来了,你又不打算做搜索引擎,为什么对网络爬虫那么热心呢?

其实,许多人口中所说的爬虫(web crawler),跟另外一种功能“网页抓取”(web scraping)搞混了。

维基百科上,对于后者这样解释:

Web scraping, web harvesting, or web data extraction is data scraping used for extracting data from websites. Web scraping software may access the World Wide Web directly using the Hypertext Transfer Protocol, or through a web browser.看到没有,即便你用浏览器手动拷贝数据下来,也叫做网页抓取(web scraping)。是不是立刻觉得自己强大了很多?

While web scraping can be done manually by a software user, the term typically refers to automate processes implemented using a bot or web crawler.也就是说,用爬虫(或者机器人)自动替你完成网页抓取工作,才是你真正想要的。

一般是先存储起来,放到数据库或者电子表格中,以备检索或者进一步分析使用。

所以,你真正想要的功能是这样的:

找到链接,获得Web页面,抓取指定信息,存储。

这个过程有可能会往复循环,甚至是滚雪球。

你希望用自动化的方式来完成它。

了解了这一点,你就不要老盯着爬虫不放了。爬虫研制出来,其实是为了给搜索引擎编制索引数据库使用的。你为了抓取点儿数据拿来使用,已经是大炮轰蚊子了。

要真正掌握爬虫,你需要具备不少基础知识。例如HTML, CSS, Javascript, 数据结构……

这也是为什么我一直犹豫着没有写爬虫教程的原因。

不过这两天,看到王烁主编的一段话,很有启发:

我喜欢讲一个另类二八定律,就是付出两成努力,了解一件事的八成。既然我们的目标很明确,就是要从网页抓取数据。那么你需要掌握的最重要能力,是拿到一个网页链接后,如何从中快捷有效地抓取自己想要的信息。

掌握了它,你还不能说自己已经学会了爬虫。

但有了这个基础,你就能比之前更轻松获取数据了。特别是对“文科生”的很多应用场景来说,非常有用。这就是赋能。

而且,再进一步深入理解爬虫的工作原理,也变得轻松许多。

这也算“另类二八定律”的一个应用吧。

Python语言的重要特色之一,就是可以利用强大的软件工具包(许多都是第三方提供)。你只需要编写简单的程序,就能自动解析网页,抓取数据。

本文给你演示这一过程。

目标要抓取网页数据,我们先制订一个小目标。

目标不能太复杂。但是完成它,应该对你理解抓取(Web Scraping)有帮助。

就选择我最近发布的一篇简书文章作为抓取对象好了。题目叫做《如何用《玉树芝兰》入门数据科学?》。

这篇文章里,我把之前的发布的数据科学系列文章做了重新组织和串讲。

文中包含很多之前教程的标题和对应链接。例如下图红色边框圈起来的部分。

假设你对文中提到教程都很感兴趣,希望获得这些文章的链接,并且存储到Excel里,就像下面这个样子:

你需要把非结构化的分散信息(自然语言文本中的链接),专门提取整理,并且存储下来。

即便不会编程,你也可以全文通读,逐个去找这些文章链接,手动把文章标题、链接都分别拷贝下来,存到Excel表里面。

但是,这种手工采集方法没有效率。

环境要装Python,比较省事的办法是安装Anaconda套装。

请到这个网址下载Anaconda的最新版本。

请选择左侧的 Python 3.6 版本下载安装。

如果你需要具体的步骤指导,或者想知道Windows平台如何安装并运行Anaconda命令,请参考我为你准备的视频教程。

安装好Anaconda之后,请到这个网址下载本教程配套的压缩包。

下载后解压,你会在生成的目录(下称“演示目录”)里面看到以下三个文件。

打开终端,用cd命令进入该演示目录。如果你不了解具体使用方法,也可以参考视频教程。

我们需要安装一些环境依赖包。

pip install pipenv这里安装的,是一个优秀的 Python 软件包管理工具 pipenv 。

pipenv install看到演示目录下两个Pipfile开头的文件了吗?它们就是 pipenv 的设置文档。

pipenv 工具会依照它们,自动为我们安装所需要的全部依赖软件包。

上图里面有个绿色的进度条,提示所需安装软件数量和实际进度。

装好后,根据提示我们执行:

pipenv shell此处请确认你的电脑上已经安装了 Google Chrome 浏览器。

jupyter notebook默认浏览器(Google Chrome)会开启,并启动 Jupyter 笔记本界面:

你可以直接点击文件列表中的第一项ipynb文件,可以看到本教程的全部示例代码。

你可以一边看教程的讲解,一边依次执行这些代码。

但是,我建议的方法,是回到主界面下,新建一个新的空白 Python 3 笔记本。

请跟着教程,一个个字符输入相应的内容。这可以帮助你更为深刻地理解代码的含义,更高效地把技能内化。

准备工作结束,下面我们开始正式输入代码。

代码读入网页加以解析抓取,需要用到的软件包是 requests_html 。我们此处并不需要这个软件包的全部功能,只读入其中的 HTMLSession 就可以。

from requests_html import HTMLSession然后,我们建立一个会话(session),即让Python作为一个客户端,和远端服务器交谈。

session = HTMLSession()前面说了,我们打算采集信息的网页,是《如何用《玉树芝兰》入门数据科学?》一文。

我们找到它的网址,存储到url变量名中。

r = session.get(url)网页里面都有什么内容呢?

我们告诉Python,请把服务器传回来的内容当作HTML文件类型处理。我不想要看HTML里面那些乱七八糟的格式描述符,只看文字部分。

我们心里有数了。取回来的网页信息是正确的,内容是完整的。

好了,我们来看看怎么趋近自己的目标吧。

我们先用简单粗暴的方法,尝试获得网页中包含的全部链接。

把返回的内容作为HTML文件类型,我们查看 links 属性:

不过,你发现没有?这里许多链接,看似都不完全。例如第一条结果,只有:

‘/’这是什么东西?是不是链接抓取错误啊?

这就好像我们在国内邮寄快递包裹,填单子的时候一般会写“XX省XX市……”,前面不需要加上国家名称。只有国际快递,才需要写上国名。

但是如果我们希望获得全部可以直接访问的链接,怎么办呢?

很容易,也只需要一条 Python 语句。

这回看着是不是就舒服多了?

我们的任务已经完成了吧?链接不是都在这里吗?

链接确实都在这里了,可是跟我们的目标是不是有区别呢?

我们不光要找到链接,还得找到链接对应的描述文字呢,结果里包含吗?

结果列表中的链接,都是我们需要的吗?

不是。看长度,我们就能感觉出许多链接并不是文中描述其他数据科学文章的网址。

这种简单粗暴直接罗列HTML文件中所有链接的方法,对本任务行不通。

我们得学会跟 Python 说清楚我们要找的东西。这是网页抓取的关键。

想想看,如果你想让助手(人类)帮你做这事儿,怎么办?

“寻找正文中全部可以点击的蓝色文字链接,拷贝文字到Excel表格,然后右键复制对应的链接,也

Similar Posts

发表评论

邮箱地址不会被公开。 必填项已用*标注